#### **Preliminary communication**

## Steuerung metallkatalysierter Reaktionen

# XVI \*. Nickelkatalysierte Cooligomerisation von 2-t-Butyl-1,3-butadien mit Butadien

Tamás Bartik \*\*, Paul Heimbach, Thomas Himmler \*\*\* und Richard Mynott

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-4330 Mülheim a.d. Ruhr (B.R.D.) (Eingegangen den 19. April 1988)

### Abstract

The nickel(0)-catalyzed cooligomerization of 2-t-butyl-1,3-butadiene with 1,3butadiene gives cyclic cotrimers and codimers in very low yields. The reaction to give cyclic codimeric products is accelerated appreciably by the addition of a phosphine ligand such as triphenylphosphine.

Wir berichteten über die Oligomerisation von 2-t-Butyl-1,3-butadien (1) am phosphorligandfreien Nickelkatalysator [1]. Die in diesem System beobachtete hohe Reaktivität von 1 sollte auch eine leichte Cooligomerisation dieses Diens mit 1,3-Butadien (2) ermöglichen. Die Ergebnisse dieser Versuche werden im folgenden beschrieben.

Am ligandfreien Nickelkatalysator wird 1 bei Reaktionsbedingungen [2], unter denen es in Abwesenheit von 2 quantitativ cyclodimerisiert, nur zu ca. 12% umgesetzt. Auch der Umsatz an 2 beträgt nur etwa 10%. Als Reaktionsprodukte werden Cyclodimere von 1 und Cyclotrimere von 2 erhalten; daneben in Spuren auch Cyclocodimere sowie zwei Cyclocotrimere 3 und 4 aus zwei Teilen 2 und einem Molekül 1.

Die Strukturen dieser in ungefähr gleichen Anteilen auftretenden Cotrimeren 3 und 4 konnten, wie bereits bei den Cyclodimeren von 1 [1], mittels <sup>13</sup>C-NMR-Spektroskopie unter Anwendung der 2D-INADEQUATE-Technik [3] aufgeklärt werden. Diese ermöglichte eine eindeutige Signalzuordnung (s. Tabelle 1). Die

<sup>\*</sup> XV. Mitteilung siehe Ref. 1.

<sup>\*\*</sup> Stipendiat der Max-Planck-Gesellschaft; Heimatanschrift: Forschungsgruppe für Petrolchemie der Ungarischen Akademie der Wissenschaften, H-8200 Veszprém, Schönherz Z. u.8 (Ungarn).

<sup>\*\*\*</sup> Korrespondenzautor. Neue Anschrift: Bayer AG, Wissenschaftliches Hauptlabor, D-5090 Leverkusen.

|       | 3        | 4        | 5        |  |
|-------|----------|----------|----------|--|
| C(1)  | 145.8(s) | 144.9(s) | 145.2(s) |  |
| C(2)  | 126.3(d) | 123.4(d) | 116.6(d) |  |
| C(3)  | 31.6(t)  | 30.6(t)  | 31.6(t)  |  |
| C(4)  | 30.1(t)  | 28.2(t)  | 37.8(d)  |  |
| C(5)  | 127.3(d) | 130.9(d) | 29.4(t)  |  |
| C(ć)  | 134.8(d) | 128.3(d) | 24.2(t)  |  |
| C(7)  | 32.8(t)  | 26.2(t)  | 143.8(d) |  |
| C(8)  | 31.3(t)  | 30.8(t)  | 112.3(t) |  |
| C(9)  | 128.9(d) | 130.1(d) | 35.2(s)  |  |
| C(10) | 134.3(d) | 131.1(d) | 29.1(q)  |  |
| C(11) | 33.3(t)  | 33.4(t)  | · •      |  |
| C(12) | 27.4(t)  | 26.8(t)  |          |  |
| C(13) | 36.2(s)  | 36.5(s)  |          |  |
| C(14) | 31.4(q)  | 30.2(q)  |          |  |

<sup>13</sup>C-NMR-Daten für 3, 4 und 5.  $\delta$ -Werte auf CDCl<sub>3</sub> bezogen und auf TMS ( $\delta$ (CDCl<sub>3</sub>) 77.01 umgerechnet <sup>*a*</sup>); Numerierung der C-Atome s. Schema 1

<sup>a</sup> Die <sup>13</sup>C-NMR-Spektren wurden in 10 mm-Röhrchen in CDCl<sub>3</sub> bei 75.5 MHz (Bruker WM-300-Spektrometer) aufgenommen. Typische Messbedingungen für die 2D-INADEQUATE-Spektren: Datenmatrix 2K  $\cdot$  256 ( $t_2$ ,  $t_1$ ), 128 Scans je  $t_2$ -Zeitinkrement; Spektralbreite 11.9 kHz;  $\tau$ -Inkrement 5 ms (entspricht mittlerer Kopplung <sup>1</sup>J(CC) 50 Hz); Cycluszeit 4.1 s.

Bestimmung der Konfiguration der t-butyl-substituierten Doppelbindungen war über eine Inkrementanalyse möglich.

Bei 3 und 4 handelt es sich demnach um 1-t-Butyl-cyclododeca-Z, E, E-1,5,9-trien (3) und 1-t-Butyl-cyclododeca-Z, Z, E-1,5,9-trien (4). Der Zusatz des Liganden Triphenylphosphan (TPP) bewirkt eine starke Beschleunigung der katalytischen Reak-



Fig. 1. Einfluss der Ligandkonzentration  $(\log [L]_0 / [Ni]_0, L = TPP)$  auf Butadiendimerisation und Codimerisation im System Ni(cod)<sub>2</sub>/1/2/TPP. Auf der Ordinate ist der als nicht reagiertes Edukt bzw. der in den Produkten wiedergefundene prozentuale Gewichtsanteil an eingesetztem Butadien 2 aufgetragen.

Tabelle 1



Cyclotrimere von2 + Cyclodimere von1

Schema 1.

tion. Die Fig. 1 zeigt, dass der Ligandzusatz ab  $\log [L]_0/[Ni]_0 > -2$  (Methode der "diskontinuierlichen inversen Titration" [4]) zunächst die Cyclodimerisation von **2** aktiviert. Ab  $\log [L]_0/[Ni]_0 = 0$  steigt dann der Anteil an codimeren Produkten sehr schnell an; diese Codimere werden bei grossem Ligandüberschuss schliesslich in hoher Selektivität gebildet.

Weit überwiegendes Hauptprodukt bei den Codimeren ist 1-t-Butyl-4-vinylcyclohexen (5), dessen Struktur wiederum durch 2D-INADEQUATE-Messung gesichert wurde (s. Tabelle 1). Einem zweiten, in nur sehr geringen Anteilen auftretendem Isomeren ordnen wir aufgrund seines gaschromatographischen Retentionsverhaltens und des Ergebnisses der GC/MS-Kopplung ebenfalls die Struktur eines substituierten Vinylcyclohexens zu, also 1-t-Butyl-5-vinyl-cyclohexen (6). Ein drittes Codimeres wurde anhand seines <sup>1</sup>H-NMR-Spektrums als 1-t-Butyl-Z, Z-1,5-cyclooctadien (7) identifiziert [5]. Die verschiedenen Reaktionen, die im System Ni(cod)<sub>2</sub>/1/2/(TPP) ablaufen können, sind im Schema 1 zusammengefasst.

Im Gegensatz zu der Codimerisation von Isopren bzw. 2,3-Dimethyl-1,3-butadien mit 2, bei der das Verhältnis von Acht- zu Sechsringverbindungen 15/1 bzw. 12/1 beträgt [6], überwiegt bei der Reaktion mit 1 die Bildung der Vinylcyclohexene (1/35).

Die Erhöhung der Reaktionsgeschwindigkeit im System  $Ni(cod)_2/1/2/TPP$  durch den Zusatz des Triphenylphosphans (s. Fig. 2) entspricht dem ganz ähnlichen Verhalten im System  $Ni(cod)_2/2/TPP$ . Bei der katalytischen Reaktion des Dien 1 bewirkt der Ligandzusatz dagegen eine starke Hemmung der Katalyse [1].

Die Bildung von Cotrimeren bei insgesamt geringem Dienumsatz im System  $Ni(cod)_2/2/1$  deutet darauf hin, dass hier überwiegend ein Zwischenkomplex mit



Fig. 2. Gleichsinnige Wirkung des Zusatzes von Triphenylphosphan (TPP) auf die Reaktionsgeschwindigkeiten (Umsatzkurven) bei der nickel-katalysierten Dimerisation von 2 und der Codimerisation von 1 und 2; L/Ni = 10/1 (vgl. dazu auch Fig. 1 in Ref. 1).

Tabelle 2

Butadienumsatz (U) und Verhältnis Codimere/Butadiendimere (V) bei der Codimerisation von 1 und 2 in Abhängigkeit von den Ligandparametern  $\chi$  (elektronisch) und  $\theta$  (sterisch) nach Tolman [8]

| Ligand                | FT <sub>x</sub> | θ   | $\log[L]_0 / [Ni]_0$ | U   | V   |
|-----------------------|-----------------|-----|----------------------|-----|-----|
|                       | $(cm^{-1})$     | (°) |                      | (%) |     |
| Ph <sub>2</sub> PMe   | 12.10           | 136 | +0.40                | 97  | 7.5 |
| Ph <sub>3</sub> P     | 13.25           | 145 | +0.48                | 97  | 1.9 |
| $P(O-o-MeC_6H_4)_3$   | 29.05           | 141 | +0.44                | 97  | 1.8 |
| $P(O-o-t-BuC_6H_4)_3$ | 30.50           | 175 | +0.45                | 88  | 0.1 |

t-butyl-substituierter  $C_8$ -Kette am Nickel vorliegt, wobei ein zweites Molekül 2 am Nickel assoziiert ist. Die Abreaktion aus diesem Komplex zu 3 bzw. 4 erfolgt aber nur sehr langsam. Der Zusatz geeigneter Phosphanliganden beschleunigt zunächst die Cyclodimerisation von 2 aus LNiC<sub>8</sub>-Komplexen heraus, bei höheren Ligand-konzentrationen dann die Codimerisation von 1 und 2.

Während für einige nickelkatalysierte Oligomerisationen und Cooligomerisationen neben der Ligandkonzentrations- auch die Ligandeigenschaftssteuerung aufgeklärt werden konnte [7], liess sich für die Codimerisation von 1 und 2 kein einfacher Zusammenhang zwischen dem Anteil der Codimeren und den Ligandparametern  $\chi$  und  $\theta$  [8] feststellen. Gute Butadienumsätze (> 80%) werden mit den Liganden Diphenylmethyl- und Triphenylphosphan sowie Tri(o-tolyl)- und Tri(o-t-butyl-phenyl)phosphit erzielt (s. Tabelle 2). Dabei werden mit den drei erstgenannten Liganden überwiegend Codimere gebildet, während mit dem letzten Cyclodimere von 2 Hauptprodukte sind.

Dank. Die Autoren danken dem Direktor des Max-Planck-Instituts für Kohlenforschung, Herrn Prof. Dr. G. Wilke, und der Max-Planck-Gesellschaft zur Förderung der Wissenschaften für die Unterstützung dieser Arbeit ganz herzlich.

### Literatur

- 1 T. Bartik, P. Heimbach, T. Himmler und R. Mynott, Angew. Chem., 97 (1985) 345; Angew. Chem. Int. Ed. Engl., 24 (1985) 313.
- 2 Versuchsdurchführung und Reaktionsbedingungen s. [1]; das Verhältnis  $[Ni]_0/[1]_0/[2]_0$  war 1/160/160.
- 3 R. Benn und H. Günther, Angew. Chem., 95 (1983) 381; Angew. Chem. Int. Ed. Engl., 22 (1983) 390.
- 4 C.A. Tolman und J.W. Faller in L.H. Pignolet: Homogeneous Catalysis with Metal Phosphine Complexes, Plenum, New York, 1983, S. 69.
- 5 <sup>1</sup>H-NMR-Spektrum (80 MHz, Toluol- $d_8$ ) von 7:  $\delta$  1.06(s; 9H, C(CH<sub>3</sub>)<sub>3</sub>), 2.25(m; 8H, C(3), C(4), C(7), C(8)), 5.5(m; 3H, C (2), C(5), C(6)) ppm.
- 6 P. Heimbach, P.W. Jolly und G. Wilke, Adv. Organomet. Chem., 8 (1970) 29.
- 7 T. Bartik, P. Heimbach und T. Himmler, J. Organomet. Chem., 276 (1984) 399.
- 8 (a) C.A. Tolman, Chem. Rev., 77 (1977) 313; (b) T. Bartik, T. Himmler, H.-G. Schulte und K. Seevogel, J. Organomet. Chem., 272 (1984) 29; (c) T. Bartik und T. Himmler, ibid., 293 (1985) 343.